Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 232
Filtrar
2.
bioRxiv ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38559000

RESUMO

The evolution of SARS-CoV-2 variants and their respective phenotypes represents an important set of tools to understand basic coronavirus biology as well as the public health implications of individual mutations in variants of concern. While mutations outside of Spike are not well studied, the entire viral genome is undergoing evolutionary selection, particularly the central disordered linker region of the nucleocapsid (N) protein. Here, we identify a mutation (G215C), characteristic of the Delta variant, that introduces a novel cysteine into this linker domain, which results in the formation of a disulfide bond and a stable N-N dimer. Using reverse genetics, we determined that this cysteine residue is necessary and sufficient for stable dimer formation in a WA1 SARS-CoV-2 background, where it results in significantly increased viral growth both in vitro and in vivo. Finally, we demonstrate that the N:G215C virus packages more nucleocapsid per virion and that individual virions are larger, with elongated morphologies.

4.
Cell Rep ; 43(3): 113965, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38492217

RESUMO

G3BP1/2 are paralogous proteins that promote stress granule formation in response to cellular stresses, including viral infection. The nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inhibits stress granule assembly and interacts with G3BP1/2 via an ITFG motif, including residue F17, in the N protein. Prior studies examining the impact of the G3PB1-N interaction on SARS-CoV-2 replication have produced inconsistent findings, and the role of this interaction in pathogenesis is unknown. Here, we use structural and biochemical analyses to define the residues required for G3BP1-N interaction and structure-guided mutagenesis to selectively disrupt this interaction. We find that N-F17A mutation causes highly specific loss of interaction with G3BP1/2. SARS-CoV-2 N-F17A fails to inhibit stress granule assembly in cells, has decreased viral replication, and causes decreased pathology in vivo. Further mechanistic studies indicate that the N-F17-mediated G3BP1-N interaction promotes infection by limiting sequestration of viral genomic RNA (gRNA) into stress granules.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , DNA Helicases/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Virulência , RNA Guia de Sistemas CRISPR-Cas , Proteínas do Nucleocapsídeo , Replicação Viral , RNA Viral/genética
5.
EMBO Rep ; 25(2): 902-926, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38177924

RESUMO

Viruses interact with numerous host factors to facilitate viral replication and to dampen antiviral defense mechanisms. We currently have a limited mechanistic understanding of how SARS-CoV-2 binds host factors and the functional role of these interactions. Here, we uncover a novel interaction between the viral NSP3 protein and the fragile X mental retardation proteins (FMRPs: FMR1, FXR1-2). SARS-CoV-2 NSP3 mutant viruses preventing FMRP binding have attenuated replication in vitro and reduced levels of viral antigen in lungs during the early stages of infection. We show that a unique peptide motif in NSP3 binds directly to the two central KH domains of FMRPs and that this interaction is disrupted by the I304N mutation found in a patient with fragile X syndrome. NSP3 binding to FMRPs disrupts their interaction with the stress granule component UBAP2L through direct competition with a peptide motif in UBAP2L to prevent FMRP incorporation into stress granules. Collectively, our results provide novel insight into how SARS-CoV-2 hijacks host cell proteins and provides molecular insight into the possible underlying molecular defects in fragile X syndrome.


Assuntos
COVID-19 , Síndrome do Cromossomo X Frágil , Humanos , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Peptídeos/metabolismo , Proteínas de Ligação a RNA/genética , SARS-CoV-2
6.
bioRxiv ; 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37693415

RESUMO

Viruses interact with numerous host factors to facilitate viral replication and to dampen antiviral defense mechanisms. We currently have a limited mechanistic understanding of how SARS-CoV-2 binds host factors and the functional role of these interactions. Here, we uncover a novel interaction between the viral NSP3 protein and the fragile X mental retardation proteins (FMRPs: FMR1 and FXR1-2). SARS-CoV-2 NSP3 mutant viruses preventing FMRP binding have attenuated replication in vitro and have delayed disease onset in vivo. We show that a unique peptide motif in NSP3 binds directly to the two central KH domains of FMRPs and that this interaction is disrupted by the I304N mutation found in a patient with fragile X syndrome. NSP3 binding to FMRPs disrupts their interaction with the stress granule component UBAP2L through direct competition with a peptide motif in UBAP2L to prevent FMRP incorporation into stress granules. Collectively, our results provide novel insight into how SARS-CoV-2 hijacks host cell proteins for efficient infection and provides molecular insight to the possible underlying molecular defects in fragile X syndrome.

7.
bioRxiv ; 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37425880

RESUMO

G3BP1/2 are paralogous proteins that promote stress granule formation in response to cellular stresses, including viral infection. G3BP1/2 are prominent interactors of the nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the functional consequences of the G3BP1-N interaction in the context of viral infection remain unclear. Here we used structural and biochemical analyses to define the residues required for G3BP1-N interaction, followed by structure-guided mutagenesis of G3BP1 and N to selectively and reciprocally disrupt their interaction. We found that mutation of F17 within the N protein led to selective loss of interaction with G3BP1 and consequent failure of the N protein to disrupt stress granule assembly. Introduction of SARS-CoV-2 bearing an F17A mutation resulted in a significant decrease in viral replication and pathogenesis in vivo, indicating that the G3BP1-N interaction promotes infection by suppressing the ability of G3BP1 to form stress granules.

8.
Nat Commun ; 14(1): 4260, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37460536

RESUMO

The SARS-CoV-2 Omicron subvariant BA.5 rapidly spread worldwide and replaced BA.1/BA.2 in many countries, becoming globally dominant. BA.5 has unique amino acid substitutions in the spike protein that both mediate immune escape from neutralizing antibodies produced by immunizations and increase ACE2 receptor binding affinity. In a comprehensive, long-term (up to 9 months post primary vaccination), experimental vaccination study using male Syrian hamsters, we evaluate neutralizing antibody responses and efficacy against BA.5 challenge after primary vaccination with Ad26.COV2.S (Janssen) or BNT162b2 (Pfizer/BioNTech) followed by a homologous or heterologous booster with mRNA-1273 (Moderna) or NVX-CoV2373 (Novavax). Notably, one high or low dose of Ad26.COV2.S provides more durable immunity than two primary doses of BNT162b2, and the NVX-CoV2373 booster provides the strongest augmentation of immunity, reduction in BA.5 viral replication, and disease. Our data demonstrate the immunogenicity and efficacy of different prime/boost vaccine regimens against BA.5 infection in an immune-competent model and provide new insights regarding COVID-19 vaccine strategies.


Assuntos
COVID-19 , Vacinas , Animais , Cricetinae , Masculino , Humanos , Vacinas contra COVID-19 , Ad26COVS1 , Vacina BNT162 , Mesocricetus , SARS-CoV-2 , COVID-19/prevenção & controle , Anticorpos Neutralizantes , Anticorpos Antivirais
9.
bioRxiv ; 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37131784

RESUMO

SARS-CoV-2 Omicron variants emerged in 2022 with >30 novel amino acid mutations in the spike protein alone. While most studies focus on receptor binding domain changes, mutations in the C-terminus of S1 (CTS1), adjacent to the furin cleavage site, have largely been ignored. In this study, we examined three Omicron mutations in CTS1: H655Y, N679K, and P681H. Generating a SARS-CoV-2 triple mutant (YKH), we found that the mutant increased spike processing, consistent with prior reports for H655Y and P681H individually. Next, we generated a single N679K mutant, finding reduced viral replication in vitro and less disease in vivo. Mechanistically, the N679K mutant had reduced spike protein in purified virions compared to wild-type; spike protein decreases were further exacerbated in infected cell lysates. Importantly, exogenous spike expression also revealed that N679K reduced overall spike protein yield independent of infection. Although a loss-of-function mutation, transmission competition demonstrated that N679K had a replication advantage in the upper airway over wild-type SARS-CoV-2 in hamsters, potentially impacting transmissibility. Together, the data show that N679K reduces overall spike protein levels during Omicron infection, which has important implications for infection, immunity, and transmission.

10.
PLoS Negl Trop Dis ; 17(4): e0011267, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37023003

RESUMO

[This corrects the article DOI: 10.1371/journal.pntd.0010459.].

11.
N Engl J Med ; 388(9): 843-844, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36856622
12.
NPJ Vaccines ; 8(1): 11, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36759505

RESUMO

Scrub typhus caused by the obligately intracellular bacterium, Orientia tsutsugamushi, is a major cause of life-threatening acute undifferentiated febrile illness in eastern Asia and the islands of the Western Pacific and Indian oceans. Since the estimation of an incidence of 1 million cases annually two decades ago, the number of cases has increased substantially in endemic regions, reappeared where the disease was forgotten, and spread northward. Trombiculid mites are both reservoir and vector. Despite 80 years of efforts to develop a vaccine, there is none. Protective immunity is mediated by antibodies and CD8 and CD4 T cells. Previous efforts have failed because of gaps in understanding immunity to O. tsutsugamushi, particularly the requirements for vaccine-induced immunity, lack of knowledge regarding immune memory in scrub typhus, and lack of attention to addressing the issue of cross-protection between strains. There are numerous strains of O. tsutsugamushi, and modestly durable immunity is strain-specific. Antibodies to the strain that caused infection are protective against challenges with the homologous strain but, despite reactivity with other immunodominant antigens, the immune serum does not protect against heterologous strains. Among the antigens detected by western immunoblot in immune sera (22-, 47-, 56-, 58-, and 110 kDa proteins), only the 56 kDa protein stimulates strong protection. This protein contains four hypervariable regions which are likely, on the basis of limited data, to be the targets of neutralizing antibodies. However, a method that definitively detects neutralizing antibody has yet to be developed. Only one study has used genomic data to pursue the discovery of protective antigens. Three conserved autotransporters were identified, and only immunization with ScaA provided protection against the homologous strain, but only 40% of animals were protected against challenge with a heterologous strain. A multiplex vaccine containing conformational antigens of the hypervariable regions of the 56 kDa protein of the strains of the greatest clinical and epidemiological importance, as well as conserved regions of the 56 kDa protein, ScaA, and other protective antigens identified by future genomic and bioinformatics methods should be developed and tested.

13.
J Virol ; 97(2): e0153222, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36722972

RESUMO

Understanding the molecular basis of innate immune evasion by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an important consideration for designing the next wave of therapeutics. Here, we investigate the role of the nonstructural protein 16 (NSP16) of SARS-CoV-2 in infection and pathogenesis. NSP16, a ribonucleoside 2'-O-methyltransferase (MTase), catalyzes the transfer of a methyl group to mRNA as part of the capping process. Based on observations with other CoVs, we hypothesized that NSP16 2'-O-MTase function protects SARS-CoV-2 from cap-sensing host restriction. Therefore, we engineered SARS-CoV-2 with a mutation that disrupts a conserved residue in the active site of NSP16. We subsequently show that this mutant is attenuated both in vitro and in vivo, using a hamster model of SARS-CoV-2 infection. Mechanistically, we confirm that the NSP16 mutant is more sensitive than wild-type SARS-CoV-2 to type I interferon (IFN-I) in vitro. Furthermore, silencing IFIT1 or IFIT3, IFN-stimulated genes that sense a lack of 2'-O-methylation, partially restores fitness to the NSP16 mutant. Finally, we demonstrate that sinefungin, an MTase inhibitor that binds the catalytic site of NSP16, sensitizes wild-type SARS-CoV-2 to IFN-I treatment and attenuates viral replication. Overall, our findings highlight the importance of SARS-CoV-2 NSP16 in evading host innate immunity and suggest a target for future antiviral therapies. IMPORTANCE Similar to other coronaviruses, disruption of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) NSP16 function attenuates viral replication in a type I interferon-dependent manner. In vivo, our results show reduced disease and viral replication at late times in the hamster lung, but an earlier titer deficit for the NSP16 mutant (dNSP16) in the upper airway. In addition, our results confirm a role for IFIT1 but also demonstrate the necessity of IFIT3 in mediating dNSP16 attenuation. Finally, we show that targeting NSP16 activity with a 2'-O-methyltransferase inhibitor in combination with type I interferon offers a novel avenue for antiviral development.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Peptídeos e Proteínas de Sinalização Intracelular , SARS-CoV-2 , Proteínas não Estruturais Virais , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , COVID-19/virologia , Interferon Tipo I/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Metiltransferases/metabolismo , Proteínas de Ligação a RNA/genética , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Proteínas não Estruturais Virais/metabolismo , Animais , Cricetinae
14.
Emerg Infect Dis ; 29(2): 418-421, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36692454

RESUMO

Persons experiencing homelessness in São Paulo, Brazil, were seropositive for Bartonella spp. (79/109, 72.5%) and typhus group rickettsiae (40/109, 36.7%). Bartonella quintana DNA was detected in 17.1% (14/82) body louse pools and 0.9% (1/114) blood samples. Clinicians should consider vectorborne agents as potential causes of febrile syndromes in this population.


Assuntos
Bartonella , Pessoas Mal Alojadas , Rickettsia , Tifo Epidêmico Transmitido por Piolhos , Humanos , Bartonella/genética , Rickettsia/genética , Brasil/epidemiologia
15.
Emerg Infect Dis ; 29(2): 456-459, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36692499

RESUMO

We assessed serum samples collected in Cauca Department, Colombia, from 486 persons for Orientia seroreactivity. Overall, 13.8% showed reactive IgG by indirect immunofluorescence antibody assay and ELISA. Of those samples, 30% (20/67) were confirmed to be positive by Western blot, showing >1 reactive band to Orientia 56-kD or 47-kD antigens.


Assuntos
Orientia tsutsugamushi , Infecções por Rickettsia , Tifo por Ácaros , Humanos , Tifo por Ácaros/epidemiologia , Colômbia/epidemiologia , População Rural , Sensibilidade e Especificidade , Imunoglobulina M , Anticorpos Antibacterianos , Ensaio de Imunoadsorção Enzimática , Orientia
16.
Emerg Infect Dis ; 29(1): 212-214, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36573645

RESUMO

Whether increases in typhus group rickettsiosis in Galveston County, Texas, USA, are caused by increased recognition or true reemergence is unclear. We conducted a serosurvey that demonstrated Rickettsia typhi antibodies increased from 1.2% in 2013 to 7.8% in 2021 (p<0.001). These findings support pathogen reemergence rather than enhanced recognition alone.


Assuntos
Tifo Endêmico Transmitido por Pulgas , Tifo Epidêmico Transmitido por Piolhos , Humanos , Tifo Endêmico Transmitido por Pulgas/diagnóstico , Tifo Endêmico Transmitido por Pulgas/epidemiologia , Rickettsia typhi , Tifo Epidêmico Transmitido por Piolhos/epidemiologia , Tifo Epidêmico Transmitido por Piolhos/microbiologia , Texas/epidemiologia , Estudos Soroepidemiológicos
17.
PLoS Negl Trop Dis ; 16(11): e0010459, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36417363

RESUMO

Orientia tsutsugamushi is an obligately intracellular bacterium with endothelial tropism and can cause mild to lethal scrub typhus in humans. No vaccine is available for this reemerging and severely neglected infection. Previous scrub typhus studies have utilized inbred mice, yet such models have intrinsic limitations. Thus, the development of suitable mouse models that better mimic human diseases is in great need for immunologic investigation and future vaccine studies. This study is aimed at establishing scrub typhus in outbred CD-1 mice and defining immune biomarkers related to disease severity. CD-1 mice received O. tsutsugamushi Karp strain via the i.v. route; major organs were harvested at 2-12 days post-infection for kinetic analyses. We found that for our given infection doses, CD-1 mice were significantly more susceptible (90-100% lethal) than were inbred C57BL/6 mice (0-10% lethal). Gross pathology of infected CD-1 mouse organs revealed features that mimicked human scrub typhus, including pulmonary edema, interstitial pneumonia, perivascular lymphocytic infiltrates, and vasculitis. Alteration in angiopoietin/receptor expression in inflamed lungs implied endothelial dysfunction. Lung immune gene profiling using NanoString analysis displayed a Th1/CD8-skewed, but Th2 repressed profile, including novel biomarkers not previously investigated in other scrub typhus models. Bio-plex analysis revealed a robust inflammatory response in CD-1 mice as evidenced by increased serum cytokine and chemokine levels, correlating with immune cell recruitment during the severe stages of the disease. This study provides an important framework indicating a value of CD-1 mice for delineating host susceptibility to O. tsutsugamushi, immune dysregulation, and disease pathogenesis. This preclinical model is particularly useful for future translational and vaccine studies for severe scrub typhus.


Assuntos
Orientia tsutsugamushi , Tifo por Ácaros , Humanos , Camundongos , Animais , Orientia tsutsugamushi/genética , Tifo por Ácaros/microbiologia , Transcriptoma , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
18.
bioRxiv ; 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36203546

RESUMO

Understanding the molecular basis of innate immune evasion by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an important consideration for designing the next wave of therapeutics. Here, we investigate the role of the nonstructural protein 16 (NSP16) of SARS-CoV-2 in infection and pathogenesis. NSP16, a ribonucleoside 2'- O methyltransferase (MTase), catalyzes the transfer of a methyl group to mRNA as part of the capping process. Based on observations with other CoVs, we hypothesized that NSP16 2'- O MTase function protects SARS-CoV-2 from cap-sensing host restriction. Therefore, we engineered SARS-CoV-2 with a mutation that disrupts a conserved residue in the active site of NSP16. We subsequently show that this mutant is attenuated both in vitro and in vivo , using a hamster model of SARS-CoV-2 infection. Mechanistically, we confirm that the NSP16 mutant is more sensitive to type I interferon (IFN-I) in vitro . Furthermore, silencing IFIT1 or IFIT3, IFN-stimulated genes that sense a lack of 2'- O methylation, partially restores fitness to the NSP16 mutant. Finally, we demonstrate that sinefungin, a methyltransferase inhibitor that binds the catalytic site of NSP16, sensitizes wild-type SARS-CoV-2 to IFN-I treatment. Overall, our findings highlight the importance of SARS-CoV-2 NSP16 in evading host innate immunity and suggest a possible target for future antiviral therapies. Importance: Similar to other coronaviruses, disruption of SARS-CoV-2 NSP16 function attenuates viral replication in a type I interferon-dependent manner. In vivo , our results show reduced disease and viral replication at late times in the hamster lung, but an earlier titer deficit for the NSP16 mutant (dNSP16) in the upper airway. In addition, our results confirm a role for IFIT1, but also demonstrate the necessity of IFIT3 in mediating dNSP16 attenuation. Finally, we show that targeting NSP16 activity with a 2'- O methyltransferase inhibitor in combination with type I interferon offers a novel avenue for antiviral development.

19.
Vaccines (Basel) ; 10(10)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36298491

RESUMO

Outbreaks of life-threatening Rocky Mountain spotted fever in humans and dogs associated with a canine-tick maintenance cycle constitute an important One Health opportunity. The reality of the problem has been observed strikingly in Mexico, Brazil, Colombia, and Native American tribal lands in Arizona. The brown dog tick, Rhipicephalus sanguineus sensu lato, acquires the rickettsia from bacteremic dogs and can maintain the bacterium transtadially to the next tick stage. The subsequent adult tick can then transmit infection to a new host, as shown by guinea pig models. These brown dog ticks maintain spotted fever group rickettsiae transovarially through many generations, thus serving as both vector and reservoir. Vaccine containing whole-killed R. rickettsii does not stimulate sufficient immunity. Studies of Rickettsia subunit antigens have demonstrated that conformationally preserved outer-membrane autotransporter proteins A and B are the leading vaccine candidates. The possibility of a potentially safe and effective live attenuated vaccine has only begun to be explored as gene knockout methods are applied to these obligately intracellular pathogens.

20.
Sci Transl Med ; 14(662): eabq1945, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36103514

RESUMO

Emergence of SARS-CoV-2 variants of concern (VOCs), including the highly transmissible Omicron and Delta strains, has posed constant challenges to the current COVID-19 vaccines that principally target the viral spike protein (S). Here, we report a nucleoside-modified messenger RNA (mRNA) vaccine that expresses the more conserved viral nucleoprotein (mRNA-N) and show that mRNA-N vaccination alone can induce modest control of SARS-CoV-2. Critically, combining mRNA-N with the clinically proven S-expressing mRNA vaccine (mRNA-S+N) induced robust protection against both Delta and Omicron variants. In the hamster models of SARS-CoV-2 VOC challenge, we demonstrated that, compared to mRNA-S alone, combination mRNA-S+N vaccination not only induced more robust control of the Delta and Omicron variants in the lungs but also provided enhanced protection in the upper respiratory tract. In vivo CD8+ T cell depletion suggested a potential role for CD8+ T cells in protection conferred by mRNA-S+N vaccination. Antigen-specific immune analyses indicated that N-specific immunity, as well as augmented S-specific immunity, was associated with enhanced protection elicited by the combination mRNA vaccination. Our findings suggest that combined mRNA-S+N vaccination is an effective approach for promoting broad protection against SARS-CoV-2 variants.


Assuntos
COVID-19 , Vacinas Virais , Animais , Linfócitos T CD8-Positivos , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Cricetinae , Humanos , Nucleocapsídeo , RNA Mensageiro/genética , SARS-CoV-2 , Vacinação , Vacinas Sintéticas , Proteínas Virais , Vacinas de mRNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA